📅 Duration: 4 Weeks (Twice a Week) 🖥 Format: Online Live Sessions + Hands-on Assignments
📌 Session 1:
Recap of Geospatial Data Types & Coordinate Reference Systems (CRS)
Advanced Vector Data Manipulation (geopandas, shapely, fiona)
geopandas
shapely
fiona
Spatial Joins, Overlays, and Intersections
Mini Project: Merging and Cleaning Multi-Source Geospatial Data
📌 Session 2:
Working with Large Geospatial Datasets (Optimizing Performance)
Introduction to Spatial Databases & PostGIS
Importing & Querying Spatial Data in PostGIS (ogr2ogr, psql)
ogr2ogr
psql
Mini Project: Storing & Querying Geospatial Data in a PostgreSQL/PostGIS Database
📌 Session 3:
Advanced Geoprocessing (Buffer, Clip, Union, Dissolve)
Distance and Proximity Analysis (Nearest Neighbor, Voronoi Diagrams)
Spatial Statistics & Geostatistical Analysis
Mini Project: Finding Optimal Locations for New Infrastructure
📌 Session 4:
Automating GIS Workflows with Python (geopandas, shapely, fiona)
Batch Processing of Geospatial Data
Using PyQGIS for Automating QGIS Tasks
PyQGIS
Mini Project: Automating Data Cleaning & Processing in QGIS
📌 Session 5:
Introduction to Raster Analysis (rasterio, GDAL, xarray)
rasterio
GDAL
xarray
Raster Data Operations (Reprojection, Resampling, Clipping)
Image Classification (Supervised & Unsupervised)
Mini Project: Land Cover Classification Using Satellite Imagery
📌 Session 6:
Extracting & Processing Elevation Data (Digital Elevation Models - DEMs)
Terrain Analysis (Slope, Aspect, Watershed Delineation)
Working with Time-Series Geospatial Data (xarray, rioxarray)
rioxarray
Mini Project: Analyzing Flood Risk Using DEM Data
📌 Session 7:
Introduction to Web GIS (Leaflet, Folium, OpenLayers)
Building Interactive Geospatial Dashboards
Geospatial APIs (Google Maps API, OpenStreetMap, NASA EarthData)
Mini Project: Creating a Web Map with Live Data Layers
📌 Session 8:
Final Project Implementation & Debugging
Best Practices in Geospatial Analysis & Visualization
Final Project Showcase & Code Review
Next Steps: Advanced GIS, Machine Learning for Geospatial Data